|
楼主 |
发表于 2008-2-9 19:17:34
|
显示全部楼层
1常用的防静电包装袋有哪些? 由具有导静电的塑料材料制成。该种材料由基材、全属镀膜层和热封层多层复合而成,这种材料应用范围很广,防静电效果非常好,唯一缺点是成本较高。 电子器件所能承受静电破坏的静电电压器件类型 静电破坏电压(V) 器件类型 静电破坏电压(V) VMoS 30~1800 OP-AMP 190~2500 M0SFET 100~200 JEFT 140~1000 GaAsFET 100~300 SCL 680~1000 PROM 100 STTL 300~2500 CMoS 250~2000 DTL 380~7000 HMOS 50~500 肖特基二极管 300~3000 E/DMOS 200~1000 双极型晶体管 380~7000 ECL 300~2500 石英压电晶体 <10000 从上表可见大部分器件的静电破坏电压都在几百至几千伏,而在干燥的环境中人体活动所产生的静电可达几千伏到几万伏静电控制体现到设计中要做到更为有效的ESD控制,首先在器件和产品的设计中,应充分体现静电防护的思想,在器件内部设置静电防护元件(ESD Protection Device),尽量使用对静电不敏感的器件以及对所使用的静电放电敏感(ESDS, ESD-sensitive)器件提供适当的输入保护,使其更合理地避免ESD的伤害。MOS工艺是集成电路制造的主导技术, 以金属-氧化物-半导体场效应管为基本构造元件。由于MOS器件中场效应管的栅、源极之间是一层亚微米级的绝缘栅氧化层,故其输入阻抗通常大于1000M ,并且具有5pF左右的输入电容,极易受到静电的损害。因此,在MOS器件的输入级中均设置了电阻-二极管防护网络,串联电阻能够限制尖峰电流, 二极管则能限制瞬间的尖峰电压。器件内常见的防护元件还有:电容、双极晶体管、可控硅整流器(SCR,见图1)等, ESD发生时,它们在受保护器件之前迅速作出反应,将ESD的能量吸收、释放,使被保护器件所受冲击大为降低。正常情况下,防护元件在其一次崩溃(First Breakdown)区内工作,不会受到ESD损伤,一旦外加电压或电流过量(Overstress),进入二次崩溃(Secondary Breakdown)区的防护元件将受到不可逆转的损害,失去对器件的保护作用。 目前许多厂家已经研制出具有内部保护电路的器件,一系列相应的测试标准也已颁布执行,如MAXIM公司研制的模拟开关MAX4551,具有 15kV的ESD保护功能,它们必须在正常工作、停机模式和断电状态下,依据IEC1340-3-1人体模型(见图2)、IEC 1000-4-2空气间隙放电、IEC 1000-4-4快速瞬变(FTB)放电等标准,接受多项模拟ESD测试,确保符合IEC1000-4-2 Level 4 的要求。整机产品设计时,可在ESDS器件最易受损的管脚处(例如Vcc和I/O管脚),根据被保护电路的电特性、可用的电路板空间决定加入抑制电路或隔离电路。以应用很广的瞬态电压抑制器(TVS)为例,当受到外界瞬态高能量冲击时,TVS以皮秒级的速度,将其瞬态电压保护二极管两极间的高阻抗变成低阻抗,吸收高达数千瓦的浪涌功率,使两极间的电压箝位于一个预定值,被保护器件可免受ESD的损伤。TVS具有响应时间快、瞬态功率大、漏电流低(<1 A)、箝位电压易控制、体积小等优点,可有效地抑制共模、差模干扰,是电子设备ESD保护的首选器件。此外,生产环境的防静电设计也是ESD控制的关键所在,设计的依据是电子器件绝缘膜耐静电击穿电压(Vesd)、整机中敏感器件的Vesd以及生产设备的耐静电性能。制造商必须定义和坚持一个特殊的ESD控制级别,该级别由生产过程中最为敏感的元件所决定,生产环境必须保障该级别的安全性。当不知道最敏感元件的级别时,制造商应该执行EIA-625 标准,它将ESD保护的工作区域定义为"安全区",不包含可能产生高于200V的放电源。国际上已有多篇论文提出以二次崩溃电流做为静电敏感级别的判定依据,能够精确测量二次崩溃电流的传输线触波发生器(TLPG)也已成为ESD防护研发中的重要工具。1微库=1000000纳库”应为“1微库=1000纳库”、“1微库=1000000皮库 |
|