电磁兼容小小家

 找回密码
 注册
查看: 5575|回复: 0

Input Filter Design for Switching Power Supplies1

[复制链接]
发表于 2007-9-27 13:33:27 | 显示全部楼层 |阅读模式

老伙计,请登录,欢迎回家

您需要 登录 才可以下载或查看,没有帐号?注册

x
  <span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><font face="Times New Roman"><p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; TEXT-ALIGN: center; mso-outline-level: 1" align="center"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><strong><u>Input Filter Design for Switching Power Supplies:<p /></u></strong></span></p><h1 style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US"><font size="2">Written by Michele Sclocchi</font></span></h1><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; TEXT-ALIGN: center" align="center"><span lang="EN-US"><font size="2">Michele&#46;Sclocchi@nsc&#46;com</font></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; TEXT-ALIGN: center" align="center"><span><font size="2">Application Engineer, National <span style="COLOR: black">Semiconductor</span><p /></font></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><p><span style="TEXT-DECORATION: none"><strong><u>&nbsp;</u></strong></span></p></span></p><p class="MsoBodyText2" style="MARGIN: 0cm 0cm 0pt"><i style="mso-bidi-font-style: normal"><span lang="EN-US">The design of a switching power supply has always been considered a kind of magic and art, for all the engineers that design one for the first time&#46;<p /></span></i></p><p class="MsoBodyText2" style="MARGIN: 0cm 0cm 0pt"><i style="mso-bidi-font-style: normal"><span lang="EN-US">Fortunately, today the market offers different tools that help the designers&#46; National Semiconductor was the first company to offer the “Simple Switcher” software, and an on-line simulation tool that allows the design and simulation of a switching power supply&#46; New ultra-fast MOSFETs and synchronous high switching frequency PWM controllers allow the realization of high efficient and smaller switching power supply&#46;<p /></span></i></p><p class="MsoBodyText2" style="MARGIN: 0cm 0cm 0pt"><i style="mso-bidi-font-style: normal"><span lang="EN-US">All these advantages can be lost if the input filter is not properly designed&#46; An oversized input filter can unnecessarily add cost, volume and compromise the final performance of the system&#46;<p /></span></i></p><p class="MsoBodyText2" style="MARGIN: 0cm 0cm 0pt"><i style="mso-bidi-font-style: normal"><span lang="EN-US">This document explains how to choose and design the optimal input filter for a switching power supply application&#46;</span></i></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><p>&nbsp;</p></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">The input filter on a switching power supply has two primary functions&#46; One is to prevent electromagnetic interference, generated by the switching source from reaching the power line and affecting other equipment&#46;<p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">The second purpose of the input filter is to prevent high frequency voltage on the power line from <span style="COLOR: black">passing through the output of the power supply&#46;<p /></span></span></p><p class="MsoBodyText" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="COLOR: black">A passive L-C filter solution has the characteristic to achieve both filtering requirements&#46; The goal for the input filter design should be to achieve the best compromise between total performance of the filter with size and cost&#46; </span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><p>&nbsp;</p></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><p>&nbsp;</p></span></p><p class="MsoBodyText2" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US">UNDAMPED L-C FILTER:</span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><p>&nbsp;</p></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">The first simple passive filter solution is the undamped L-C passive filter shown in figure (1)&#46; <p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">Ideally a second order filter provides 12dB per octave of attenuation after the cutoff frequency f<sub>0</sub>, it has no gain before f<sub>0</sub>, and presents a peaking at the resonant frequency f<sub>0</sub>&#46;<p /></span></p><h2 style="MARGIN: 0cm 0cm 0pt; LINE-HEIGHT: 12pt"><wrapblock><shapetype id="_x0000_t75" stroked="f" filled="f" path="m@4@5l@4@11@9@11@9@5xe" o:preferrelative="t" o:spt="75" coordsize="21600,21600"><stroke joinstyle="miter" /><formulas><f eqn="if lineDrawn pixelLineWidth 0" /><f eqn="sum @0 1 0" /><f eqn="sum 0 0 @1" /><f eqn="prod @2 1 2" /><f eqn="prod @3 21600 pixelWidth" /><f eqn="prod @3 21600 pixelHeight" /><f eqn="sum @0 0 1" /><f eqn="prod @6 1 2" /><f eqn="prod @7 21600 pixelWidth" /><f eqn="sum @8 21600 0" /><f eqn="prod @7 21600 pixelHeight" /><f eqn="sum @10 21600 0" /></formulas><path o:connecttype="rect" gradientshapeok="t" o:extrusionok="f" /><lock aspectratio="t" v:ext="edit" /></shapetype><shape id="_x0000_s1028" style="MARGIN-TOP: 8&#46;35pt; Z-INDEX: 3; LEFT: 0px; MARGIN-LEFT: 3&#46;6pt; WIDTH: 301&#46;2pt; POSITION: absolute; HEIGHT: 36pt; TEXT-ALIGN: left" o:allowincell="f" type="#_x0000_t75"><imagedata src="file:///COCUME~1HEJUNP~1LOCALS~1Tempmsohtml1clip_image001&#46;wmz" /><wrap type="topAndBottom" /></shape><shape id="_x0000_s1037" style="MARGIN-TOP: 50&#46;15pt; Z-INDEX: 12; LEFT: 0px; MARGIN-LEFT: 3&#46;6pt; WIDTH: 402&#46;75pt; POSITION: absolute; HEIGHT: 131&#46;55pt; TEXT-ALIGN: left" o:allowincell="f" type="#_x0000_t75"><imagedata src="file:///COCUME~1HEJUNP~1LOCALS~1Tempmsohtml1clip_image002&#46;png" /><wrap type="topAndBottom" side="right" /></shape></wrapblock><br style="mso-ignore: vglayout" clear="all" /><span lang="EN-US"><font size="3">Figure 1: Undamped LC filter</font></span></h2><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><wrapblock><shape id="_x0000_s1035" style="MARGIN-TOP: 6&#46;6pt; Z-INDEX: 10; MARGIN-LEFT: -3&#46;6pt; WIDTH: 397&#46;8pt; POSITION: absolute; HEIGHT: 216&#46;6pt" o:allowincell="f" type="#_x0000_t75"><imagedata src="file:///COCUME~1HEJUNP~1LOCALS~1Tempmsohtml1clip_image004&#46;wmz" /><wrap type="topAndBottom" side="right" /></shape></wrapblock><br style="mso-ignore: vglayout" clear="all" /><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><p>&nbsp;</p></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">One of the critical factors involved in designing a second order filter is the <span style="COLOR: black">attenuation<s>&nbsp;</s>characteristics </span>at the corner frequency f</span><sub><span lang="EN-US"><font size="2">0</font></span></sub><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">&#46; The gain near the cutoff frequency could be very large, and amplify the noise at that frequency&#46;<p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><span style="mso-spacerun: yes">&nbsp;</span>To have a better understanding of the nature of the problem it is necessary to analyze the transfer function of the filter:<p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><wrapblock><shape id="_x0000_s1027" style="MARGIN-TOP: 13&#46;8pt; Z-INDEX: 2; MARGIN-LEFT: 4&#46;8pt; WIDTH: 202&#46;2pt; POSITION: absolute; HEIGHT: 49&#46;2pt" o:allowincell="f" type="#_x0000_t75"><imagedata src="file:///C:DOCUME~1HEJUNP~1LOCALS~1Tempmsohtml1clip_image006&#46;wmz" /><wrap type="topAndBottom" /></shape></wrapblock><br style="mso-ignore: vglayout" clear="all" /><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">The transfer function can be rewritten with the frequency expressed in radians:<p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><wrapblock><shape id="_x0000_s1029" style="MARGIN-TOP: 139&#46;8pt; Z-INDEX: 4; MARGIN-LEFT: 1&#46;2pt; WIDTH: 331&#46;8pt; POSITION: absolute; HEIGHT: 19&#46;8pt" o:allowincell="f" type="#_x0000_t75"><imagedata src="file:///C:DOCUME~1HEJUNP~1LOCALS~1Tempmsohtml1clip_image008&#46;wmz" /><wrap type="topAndBottom" side="right" /></shape><shape id="_x0000_s1030" style="MARGIN-TOP: 0px; Z-INDEX: 5; MARGIN-LEFT: 0px; WIDTH: 253&#46;8pt; POSITION: absolute; HEIGHT: 135pt" o:allowincell="f" type="#_x0000_t75"><imagedata src="file:///C:DOCUME~1HEJUNP~1LOCALS~1Tempmsohtml1clip_image009&#46;wmz" /><wrap type="topAndBottom" side="right" /></shape></wrapblock><br style="mso-ignore: vglayout" clear="all" /><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">The damping factor </span><span lang="EN-US" style="FONT-SIZE: 12pt; FONT-FAMILY: Symbol; mso-bidi-font-size: 10&#46;0pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman"; mso-char-type: symbol; mso-symbol-font-family: Symbol"><span style="mso-char-type: symbol; mso-symbol-font-family: Symbol">z</span></span><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"> describes the gain at the corner frequency&#46;<p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">For </span><span lang="EN-US" style="FONT-SIZE: 12pt; FONT-FAMILY: Symbol; mso-bidi-font-size: 10&#46;0pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman"; mso-char-type: symbol; mso-symbol-font-family: Symbol"><span style="mso-char-type: symbol; mso-symbol-font-family: Symbol">z</span></span><span lang="EN-US" style="FONT-SIZE: 12pt; FONT-FAMILY: Symbol; mso-bidi-font-size: 10&#46;0pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman"; mso-char-type: symbol; mso-symbol-font-family: Symbol"><span style="mso-char-type: symbol; mso-symbol-font-family: Symbol">&gt;</span></span><span lang="EN-US" style="FONT-SIZE: 12pt; FONT-FAMILY: Symbol; mso-bidi-font-size: 10&#46;0pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman"; mso-char-type: symbol; mso-symbol-font-family: Symbol"><span style="mso-char-type: symbol; mso-symbol-font-family: Symbol">1</span></span><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"> the two poles are complex, and the imaginary part gives the peak behavior at the resonant frequency&#46;<p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">As the damping factor becomes smaller, the gain at the corner frequency becomes larger, the ideal limit for zero damping would be infinite gain, but the internal resistance of the real components limits the maximum gain&#46; With a damping factor equal to one the imaginary component is null and there is no peaking&#46;<p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">A poor damping factor on the input filter design could have other side effects on the final performance of the system&#46; It can influence the transfer function of the feedback control loop, and cause some oscillations at the output of the power supply&#46;<p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">The Middlebrook’s extra element theorem (paper [2]), explains that the input filter does not significantly modify the converter loop gain if the output impedance curve of the input filter is far below the input impedance curve of the converter&#46; <p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><span style="mso-spacerun: yes">&nbsp;</span>In other words to avoid oscillations it is important to keep the peak output impedance of the filter below the input impedance of the converter&#46; (See figure 3)<p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">On the design point of view, a good compromise between size of the filter and performance is obtained with a minimum damping factor of 1/</span><span lang="EN-US" style="FONT-SIZE: 12pt; FONT-FAMILY: Symbol; mso-bidi-font-size: 10&#46;0pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman"; mso-char-type: symbol; mso-symbol-font-family: Symbol"><span style="mso-char-type: symbol; mso-symbol-font-family: Symbol">&Ouml;</span></span><span lang="EN-US" style="FONT-SIZE: 12pt; FONT-FAMILY: Symbol; mso-bidi-font-size: 10&#46;0pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman"; mso-char-type: symbol; mso-symbol-font-family: Symbol"><span style="mso-char-type: symbol; mso-symbol-font-family: Symbol">2</span></span><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">, which provides a 3 dB attenuation at the corner frequency, and a favorable control over the stability of the final control system&#46;<p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><p>&nbsp;</p></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><wrapblock><shape id="_x0000_s1036" style="MARGIN-TOP: 0px; Z-INDEX: 11; MARGIN-LEFT: 0px; WIDTH: 409&#46;8pt; POSITION: absolute; HEIGHT: 232&#46;2pt" o:allowincell="f" type="#_x0000_t75"><imagedata src="file:///C:DOCUME~1HEJUNP~1LOCALS~1Tempmsohtml1clip_image011&#46;wmz" /><wrap type="topAndBottom" side="right" /></shape></wrapblock><br style="mso-ignore: vglayout" clear="all" /><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><p>&nbsp;</p></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">ARALLEL DAMPED FILTER:<p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><p>&nbsp;</p></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">In most of the cases an undamped second order filter like that shown in fig&#46; 1 does not easily meet the damping requirements, thus, a damped version is preferred:<p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><p>&nbsp;</p></span></p><h2 style="MARGIN: 0cm 0cm 0pt"><wrapblock><shape id="_x0000_s1038" style="MARGIN-TOP: 0px; Z-INDEX: 13; LEFT: 0px; MARGIN-LEFT: 0px; WIDTH: 348&#46;75pt; POSITION: absolute; HEIGHT: 120&#46;75pt; TEXT-ALIGN: left" o:allowincell="f" type="#_x0000_t75"><imagedata src="file:///C:DOCUME~1HEJUNP~1LOCALS~1Tempmsohtml1clip_image013&#46;png" /><wrap type="topAndBottom" side="right" /></shape></wrapblock><br style="mso-ignore: vglayout" clear="all" /><span lang="EN-US"><font size="3">Figure 4 : Parallel damped filter</font></span></h2><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><p>&nbsp;</p></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">Figure 4 shows a damped filter made with a resistor Rd in series with a capacitor C<sub>d</sub>, all connected in parallel with the filter’s capacitor C<sub>f</sub>&#46; <p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">The purpose of resistor Rd is to reduce the output peak impedance of the filter at the cutoff frequency&#46; The capacitor Cd blocks the dc component of the input voltage, and<span style="mso-spacerun: yes">&nbsp; </span>avoids the power dissipation on Rd&#46;<p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">The capacitor Cd should have lower impedance than Rd at the resonant frequency, and be a bigger value than the filter capacitor, to not effect the cutoff point of the main R-L filter&#46;<p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">The output impedance of the filter can be calculated from the parallel of the three block impedancesZ<sub>1</sub>, Z<sub>2</sub>, and Z<sub>3</sub>:<p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><p>&nbsp;</p></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><wrapblock><shape id="_x0000_s1026" style="MARGIN-TOP: 0px; Z-INDEX: 1; MARGIN-LEFT: 0px; WIDTH: 355&#46;8pt; POSITION: absolute; HEIGHT: 50&#46;4pt" o:allowincell="f" type="#_x0000_t75"><imagedata src="file:///C:DOCUME~1HEJUNP~1LOCALS~1Tempmsohtml1clip_image015&#46;wmz" /><wrap type="topAndBottom" /></shape></wrapblock><br style="mso-ignore: vglayout" clear="all" /><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">The transfer function is:<p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><wrapblock><shape id="_x0000_s1033" style="MARGIN-TOP: 0px; Z-INDEX: 8; MARGIN-LEFT: 0px; WIDTH: 301&#46;8pt; POSITION: absolute; HEIGHT: 38&#46;4pt" o:allowincell="f" type="#_x0000_t75"><imagedata src="file:///C:DOCUME~1HEJUNP~1LOCALS~1Tempmsohtml1clip_image017&#46;wmz" /><wrap type="topAndBottom" side="right" /></shape></wrapblock><br style="mso-ignore: vglayout" clear="all" /><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">Where Z<sub>eq2&#46;3 </sub>is <span style="COLOR: black">Z<sub>2 </sub>parallel with Z<sub>3</sub>&#46;</span> <p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">The transfer function presents a zero and three poles, where the zero and the first pole fall close to each <span style="COLOR: black">other </span>at frequency </span><span lang="EN-US" style="FONT-SIZE: 12pt; FONT-FAMILY: Symbol; mso-bidi-font-size: 10&#46;0pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman"; mso-char-type: symbol; mso-symbol-font-family: Symbol"><span style="mso-char-type: symbol; mso-symbol-font-family: Symbol">w</span></span><span lang="EN-US" style="FONT-SIZE: 12pt; FONT-FAMILY: Symbol; mso-bidi-font-size: 10&#46;0pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman"; mso-char-type: symbol; mso-symbol-font-family: Symbol"><span style="mso-char-type: symbol; mso-symbol-font-family: Symbol">&raquo;</span></span><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">1/R<sub>d</sub>C<sub>d</sub>&#46; <span style="COLOR: black">The other </span>two dominant poles fall at the cutoff frequency, </span><span lang="EN-US" style="FONT-SIZE: 12pt; FONT-FAMILY: Symbol; mso-bidi-font-size: 10&#46;0pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman"; mso-char-type: symbol; mso-symbol-font-family: Symbol"><span style="mso-char-type: symbol; mso-symbol-font-family: Symbol">w</span></span><sub><span lang="EN-US" style="FONT-SIZE: 12pt; FONT-FAMILY: Symbol; mso-bidi-font-size: 10&#46;0pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman"; mso-char-type: symbol; mso-symbol-font-family: Symbol"><span style="mso-char-type: symbol; mso-symbol-font-family: Symbol">o</span></span></sub><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">=</span><span lang="EN-US" style="FONT-SIZE: 12pt; FONT-FAMILY: Symbol; mso-bidi-font-size: 10&#46;0pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman"; mso-char-type: symbol; mso-symbol-font-family: Symbol"><span style="mso-char-type: symbol; mso-symbol-font-family: Symbol">1</span></span><span lang="EN-US" style="FONT-SIZE: 12pt; FONT-FAMILY: Symbol; mso-bidi-font-size: 10&#46;0pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman"; mso-char-type: symbol; mso-symbol-font-family: Symbol"><span style="mso-char-type: symbol; mso-symbol-font-family: Symbol">/</span></span><span lang="EN-US" style="FONT-SIZE: 12pt; FONT-FAMILY: Symbol; mso-bidi-font-size: 10&#46;0pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman"; mso-char-type: symbol; mso-symbol-font-family: Symbol"><span style="mso-char-type: symbol; mso-symbol-font-family: Symbol">&Ouml;</span></span><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">LC&#46; Without compromising the results, the first pole and the zero can be ignored, and the formula can be approximated to a second order one: <p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><wrapblock><shape id="_x0000_s1034" style="MARGIN-TOP: 0px; Z-INDEX: 9; MARGIN-LEFT: 0px; WIDTH: 5in; POSITION: absolute; HEIGHT: 113&#46;4pt" o:allowincell="f" type="#_x0000_t75"><imagedata src="file:///C:DOCUME~1HEJUNP~1LOCALS~1Tempmsohtml1clip_image019&#46;wmz" /><wrap type="topAndBottom" side="right" /></shape></wrapblock><br style="mso-ignore: vglayout" clear="all" /><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">(for frequencies higher than </span><span lang="EN-US" style="FONT-SIZE: 12pt; FONT-FAMILY: Symbol; mso-bidi-font-size: 10&#46;0pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman"; mso-char-type: symbol; mso-symbol-font-family: Symbol"><span style="mso-char-type: symbol; mso-symbol-font-family: Symbol">w</span></span><span lang="EN-US" style="FONT-SIZE: 12pt; FONT-FAMILY: Symbol; mso-bidi-font-size: 10&#46;0pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman"; mso-char-type: symbol; mso-symbol-font-family: Symbol"><span style="mso-char-type: symbol; mso-symbol-font-family: Symbol">&raquo;</span></span><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">1/RdCd, the term<span style="mso-spacerun: yes">&nbsp; </span>(1+RdCd s)</span><span lang="EN-US" style="FONT-SIZE: 12pt; FONT-FAMILY: Symbol; mso-bidi-font-size: 10&#46;0pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman"; mso-char-type: symbol; mso-symbol-font-family: Symbol"><span style="mso-char-type: symbol; mso-symbol-font-family: Symbol">&raquo;</span></span><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"> RdCd s )<p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">The approximated formula for the parallel damped filter is identical to the transfer function of the undamped filter; the only difference being the damping factor </span><span lang="EN-US" style="FONT-SIZE: 12pt; FONT-FAMILY: Symbol; mso-bidi-font-size: 10&#46;0pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman"; mso-char-type: symbol; mso-symbol-font-family: Symbol"><span style="mso-char-type: symbol; mso-symbol-font-family: Symbol">z</span></span><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"> is calculated with the Rd resistance&#46;<p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><wrapblock><shape id="_x0000_s1031" style="MARGIN-TOP: 0px; Z-INDEX: 6; MARGIN-LEFT: 0px; WIDTH: 100&#46;5pt; POSITION: absolute; HEIGHT: 33pt" o:allowincell="f" type="#_x0000_t75"><imagedata src="file:///C:DOCUME~1HEJUNP~1LOCALS~1Tempmsohtml1clip_image021&#46;wmz" /><wrap type="topAndBottom" side="right" /></shape></wrapblock><br style="mso-ignore: vglayout" clear="all" /><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt">It is demonstrated that for a parallel damped filter the peaking is minimized with a damping factor equal to:<p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><wrapblock><shape id="_x0000_s1032" style="MARGIN-TOP: 22&#46;2pt; Z-INDEX: 7; MARGIN-LEFT: 3&#46;6pt; WIDTH: 114&#46;75pt; POSITION: absolute; HEIGHT: 34&#46;5pt" o:allowincell="f" type="#_x0000_t75"><imagedata src="file:///C:DOCUME~1HEJUNP~1LOCALS~1Tempmsohtml1clip_image023&#46;wmz" /><wrap type="topAndBottom" side="right" /></shape></wrapblock><br style="mso-ignore: vglayout" clear="all" /><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><p /></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt"><span lang="EN-US" style="FONT-SIZE: 12pt; mso-bidi-font-size: 10&#46;0pt"><p>&nbsp;</p></span></p><p /></p></font></span>

发表回复

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|小黑屋|电磁兼容网 电磁兼容小小家 EMC工程师家园 电磁兼容(EMC)小小家学习园地

GMT+8, 2025-1-23 10:29 , Processed in 0.082227 second(s), 19 queries .

快速回复 返回顶部 返回列表